Ray West Ray West
0 Course Enrolled • 0 Course CompletedBiography
信頼できる-ハイパスレートのAWS-Certified-Machine-Learning-Specialty更新版試験-試験の準備方法AWS-Certified-Machine-Learning-Specialty認定資格
ちなみに、Topexam AWS-Certified-Machine-Learning-Specialtyの一部をクラウドストレージからダウンロードできます:https://drive.google.com/open?id=1dmZZ5YNr0NOWnFyehW16iuwL0BGqzXiu
日常生活の低生産性と低効率にまだ圧倒されていますか?答えが「はい」の場合、AWS-Certified-Machine-Learning-Specialtyガイド急流に注意してください。バランスのとれた一流のサービスを提供するため、夢のAWS-Certified-Machine-Learning-Specialty証明書を取得し、希望の職業に就くことができます。当社の製品にはいくつかの主要な機能があり、AWS-Certified-Machine-Learning-Specialtyテストの質問に満足していただけると信じています。そして、AWS-Certified-Machine-Learning-Specialty試験問題を一度試してみると、きっと気に入るはずです。
弊社のAWS-Certified-Machine-Learning-Specialty問題集のメリットはいろいろな面で記述できます。価格はちょっと高いですが、AWS-Certified-Machine-Learning-Specialty試験に最も有効な参考書です。AWS-Certified-Machine-Learning-Specialty問題集は便利で、どこでもいつでも勉強できます。また、時間を節約でき、短い時間で勉強したら、AWS-Certified-Machine-Learning-Specialty試験に参加できます。
>> AWS-Certified-Machine-Learning-Specialty更新版 <<
AWS-Certified-Machine-Learning-Specialty認定資格、AWS-Certified-Machine-Learning-Specialty受験対策
TopexamはAmazonのAWS-Certified-Machine-Learning-Specialty認定試験についてすべて資料を提供するの唯一サイトでございます。受験者はTopexamが提供した資料を利用してAWS-Certified-Machine-Learning-Specialty認証試験は問題にならないだけでなく、高い点数も合格することができます。
Amazon AWS Certified Machine Learning - Specialty 認定 AWS-Certified-Machine-Learning-Specialty 試験問題 (Q165-Q170):
質問 # 165
A large JSON dataset for a project has been uploaded to a private Amazon S3 bucket The Machine Learning Specialist wants to securely access and explore the data from an Amazon SageMaker notebook instance A new VPC was created and assigned to the Specialist How can the privacy and integrity of the data stored in Amazon S3 be maintained while granting access to the Specialist for analysis?
- A. Launch the SageMaker notebook instance within the VPC with SageMaker-provided internet access enabled. Generate an S3 pre-signed URL for access to data in the bucket
- B. Launch the SageMaker notebook instance within the VPC with SageMaker-provided internet access enabled Use an S3 ACL to open read privileges to the everyone group
- C. Launch the SageMaker notebook instance within the VPC and create an S3 VPC endpoint for the notebook to access the data Copy the JSON dataset from Amazon S3 into the ML storage volume on the SageMaker notebook instance and work against the local dataset
- D. Launch the SageMaker notebook instance within the VPC and create an S3 VPC endpoint for the notebook to access the data Define a custom S3 bucket policy to only allow requests from your VPC to access the S3 bucket
正解:D
解説:
The best way to maintain the privacy and integrity of the data stored in Amazon S3 is to use a combination of VPC endpoints and S3 bucket policies. A VPC endpoint allows the SageMaker notebook instance to access the S3 bucket without going through the public internet. A bucket policy allows the S3 bucket owner to specify which VPCs or VPC endpoints can access the bucket. This way, the data is protected from unauthorized access and tampering. The other options are either insecure (A and D) or inefficient (B). References: Using Amazon S3 VPC Endpoints, Using Bucket Policies and User Policies
質問 # 166
A Machine Learning Specialist has completed a proof of concept for a company using a small data sample and now the Specialist is ready to implement an end-to-end solution in AWS using Amazon SageMaker The historical training data is stored in Amazon RDS Which approach should the Specialist use for training a model using that data?
- A. Move the data to Amazon ElastiCache using AWS DMS and set up a connection within the notebook to pull data in for fast access.
- B. Move the data to Amazon DynamoDB and set up a connection to DynamoDB within the notebook to pull data in
- C. Push the data from Microsoft SQL Server to Amazon S3 using an AWS Data Pipeline and provide the S3 location within the notebook.
- D. Write a direct connection to the SQL database within the notebook and pull data in
正解:C
質問 # 167
A company wants to predict the classification of documents that are created from an application. New documents are saved to an Amazon S3 bucket every 3 seconds. The company has developed three versions of a machine learning (ML) model within Amazon SageMaker to classify document text. The company wants to deploy these three versions to predict the classification of each document.
Which approach will meet these requirements with the LEAST operational overhead?
- A. Deploy each model to its own SageMaker endpoint. Create three AWS Lambda functions. Configure each Lambda function to call a different endpoint and return the results. Configure three S3 event notifications to invoke the Lambda functions when new documents are created.
- B. Deploy all the models to a single SageMaker endpoint. Treat each model as a production variant.
Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to call each production variant and return the results of each model. - C. Deploy each model to its own SageMaker endpoint Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to call each endpoint and return the results of each model.
- D. Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to create three SageMaker batch transform jobs, one batch transform job for each model for each document.
正解:B
解説:
The approach that will meet the requirements with the least operational overhead is to deploy all the models to a single SageMaker endpoint, treat each model as a production variant, configure an S3 event notification that invokes an AWS Lambda function when new documents are created, and configure the Lambda function to call each production variant and return the results of each model. This approach involves the following steps:
* Deploy all the models to a single SageMaker endpoint. Amazon SageMaker is a service that can build, train, and deploy machine learning models. Amazon SageMaker can deploy multiple models to a single endpoint, which is a web service that can serve predictions from the models. Each model can be treated as a production variant, which is a version of the model that runs on one or more instances. Amazon SageMaker can distribute the traffic among the production variants according to the specified weights1.
* Treat each model as a production variant. Amazon SageMaker can deploy multiple models to a single endpoint, which is a web service that can serve predictions from the models. Each model can be treated as a production variant, which is a version of the model that runs on one or more instances. Amazon SageMaker can distribute the traffic among the production variants according to the specified weights1.
* Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Amazon S3 is a service that can store and retrieve any amount of data. Amazon S3 can send event notifications when certain actions occur on the objects in a bucket, such as object creation, deletion, or modification. Amazon S3 can invoke an AWS Lambda function as a destination for the event notifications. AWS Lambda is a service that can run code without provisioning or managing servers2.
* Configure the Lambda function to call each production variant and return the results of each model.
AWS Lambda can execute the code that can call the SageMaker endpoint and specify the production variant to invoke. AWS Lambda can use the AWS SDK or the SageMaker Runtime API to send requests to the endpoint and receive the predictions from the models. AWS Lambda can return the results of each model as a response to the event notification3.
The other options are not suitable because:
* Option A: Configuring an S3 event notification that invokes an AWS Lambda function when new documents are created, configuring the Lambda function to create three SageMaker batch transform jobs, one batch transform job for each model for each document, will incur more operational overhead than using a single SageMaker endpoint. Amazon SageMaker batch transform is a service that can process large datasets in batches and store the predictions in Amazon S3. Amazon SageMaker batch transform is not suitable for real-time inference, as it introduces a delay between the request and the response. Moreover, creating three batch transform jobs for each document will increase the complexity and cost of the solution4.
* Option C: Deploying each model to its own SageMaker endpoint, configuring an S3 event notification that invokes an AWS Lambda function when new documents are created, configuring the Lambda function to call each endpoint and return the results of each model, will incur more operational overhead than using a single SageMaker endpoint. Deploying each model to its own endpoint will increase the number of resources and endpoints to manage and monitor. Moreover, calling each endpoint separately will increase the latency and network traffic of the solution5.
* Option D: Deploying each model to its own SageMaker endpoint, creating three AWS Lambda functions, configuring each Lambda function to call a different endpoint and return the results, configuring three S3 event notifications to invoke the Lambda functions when new documents are created, will incur more operational overhead than using a single SageMaker endpoint and a single Lambda function. Deploying each model to its own endpoint will increase the number of resources and endpoints to manage and monitor. Creating three Lambda functions will increase the complexity and cost of the solution. Configuring three S3 event notifications will increase the number of triggers and destinations to manage and monitor6.
1: Deploying Multiple Models to a Single Endpoint - Amazon SageMaker
2: Configuring Amazon S3 Event Notifications - Amazon Simple Storage Service
3: Invoke an Endpoint - Amazon SageMaker
4: Get Inferences for an Entire Dataset with Batch Transform - Amazon SageMaker
5: Deploy a Model - Amazon SageMaker
6: AWS Lambda
質問 # 168
A Machine Learning Specialist must build out a process to query a dataset on Amazon S3 using Amazon Athena The dataset contains more than 800.000 records stored as plaintext CSV files Each record contains 200 columns and is approximately 1 5 MB in size Most queries will span 5 to 10 columns only How should the Machine Learning Specialist transform the dataset to minimize query runtime?
- A. Convert the records to JSON format
- B. Convert the records to Apache Parquet format
- C. Convert the records to GZIP CSV format
- D. Convert the records to XML format
正解:B
解説:
Using compressions will reduce the amount of data scanned by Amazon Athena, and also reduce your S3 bucket storage. It's a Win-Win for your AWS bill. Supported formats: GZIP, LZO, SNAPPY (Parquet) and ZLIB.
質問 # 169
When submitting Amazon SageMaker training jobs using one of the built-in algorithms, which common parameters MUST be specified? (Select THREE.)
- A. The 1AM role that Amazon SageMaker can assume to perform tasks on behalf of the users.
- B. The training channel identifying the location of training data on an Amazon S3 bucket.
- C. Hyperparameters in a JSON array as documented for the algorithm used.
- D. The validation channel identifying the location of validation data on an Amazon S3 bucket.
- E. The Amazon EC2 instance class specifying whether training will be run using CPU or GPU.
- F. The output path specifying where on an Amazon S3 bucket the trained model will persist.
正解:A、B、F
解説:
When submitting Amazon SageMaker training jobs using one of the built-in algorithms, the common parameters that must be specified are:
The training channel identifying the location of training data on an Amazon S3 bucket. This parameter tells SageMaker where to find the input data for the algorithm and what format it is in. For example, TrainingInputMode: File means that the input data is in files stored in S3.
The IAM role that Amazon SageMaker can assume to perform tasks on behalf of the users. This parameter grants SageMaker the necessary permissions to access the S3 buckets, ECR repositories, and other AWS resources needed for the training job. For example, RoleArn: arn:aws:iam::123456789012:role/service-role
/AmazonSageMaker-ExecutionRole-20200303T150948 means that SageMaker will use the specified role to run the training job.
The output path specifying where on an Amazon S3 bucket the trained model will persist. This parameter tells SageMaker where to save the model artifacts, such as the model weights and parameters, after the training job is completed. For example, OutputDataConfig: {S3OutputPath: s3://my-bucket/my-training-job} means that SageMaker will store the model artifacts in the specified S3 location.
The validation channel identifying the location of validation data on an Amazon S3 bucket is an optional parameter that can be used to provide a separate dataset for evaluating the model performance during the training process. This parameter is not required for all algorithms and can be omitted if the validation data is not available or not needed.
The hyperparameters in a JSON array as documented for the algorithm used is another optional parameter that can be used to customize the behavior and performance of the algorithm. This parameter is specific to each algorithm and can be used to tune the model accuracy, speed, complexity, and other aspects. For example, HyperParameters: {num_round: "10", objective: "binary:logistic"} means that the XGBoost algorithm will use 10 boosting rounds and the logistic loss function for binary classification.
The Amazon EC2 instance class specifying whether training will be run using CPU or GPU is not a parameter that is specified when submitting a training job using a built-in algorithm. Instead, this parameter is specified when creating a training instance, which is a containerized environment that runs the training code and algorithm. For example, ResourceConfig: {InstanceType: ml.m5.xlarge, InstanceCount: 1, VolumeSizeInGB:
10} means that SageMaker will use one m5.xlarge instance with 10 GB of storage for the training instance.
Train a Model with Amazon SageMaker
Use Amazon SageMaker Built-in Algorithms or Pre-trained Models
CreateTrainingJob - Amazon SageMaker Service
質問 # 170
......
AmazonのAWS-Certified-Machine-Learning-Specialty認証試験のために少ないお金でよい成果を取られるのTopexamのは最良の選択でございます。Topexamは例年試験内容を提供したあなたに後悔しないように価値があるサイトだけではなく、無料の一年更新サービスも提供するに最も賢明な選択でございます。
AWS-Certified-Machine-Learning-Specialty認定資格: https://www.topexam.jp/AWS-Certified-Machine-Learning-Specialty_shiken.html
IT業界の発展するとともに、AWS-Certified-Machine-Learning-Specialty認定試験に参加したい人が大きくなっています、Amazon AWS-Certified-Machine-Learning-Specialty更新版 神様は私を実力を持っている人間にして、美しい人形ではないです、インタネット時代に当たるなので、パソコン上のAmazonのAWS-Certified-Machine-Learning-Specialty試験についての情報は複雑で区別するのは困難なことであると思われます、Topexam AWS-Certified-Machine-Learning-Specialty認定資格の専門家が研究された問題集を利用してください、Amazon AWS-Certified-Machine-Learning-Specialty更新版 でも、今方法を変えるチャンスがあります、Amazon AWS-Certified-Machine-Learning-Specialty更新版 お客様に安心してお買い物をお楽しみいただけます、Amazon AWS-Certified-Machine-Learning-Specialty 更新版 この問題集を利用したら、あなたは試験に準備する時間を節約することができるだけでなく、試験で楽に高い点数を取ることもできます。
食事の対価は絵を一枚、ん、タケかあ、IT業界の発展するとともに、AWS-Certified-Machine-Learning-Specialty認定試験に参加したい人が大きくなっています、神様は私を実力を持っている人間にして、美しい人形ではないです、インタネット時代に当たるなので、パソコン上のAmazonのAWS-Certified-Machine-Learning-Specialty試験についての情報は複雑で区別するのは困難なことであると思われます。
実用的AWS-Certified-Machine-Learning-Specialty|効率的なAWS-Certified-Machine-Learning-Specialty更新版試験|試験の準備方法AWS Certified Machine Learning - Specialty認定資格
Topexamの専門家が研究AWS-Certified-Machine-Learning-Specialtyされた問題集を利用してください、でも、今方法を変えるチャンスがあります。
- AWS-Certified-Machine-Learning-Specialty資格勉強 🦲 AWS-Certified-Machine-Learning-Specialty試験対策書 ➕ AWS-Certified-Machine-Learning-Specialty専門知識訓練 🎍 ✔ www.jpexam.com ️✔️を開いて▶ AWS-Certified-Machine-Learning-Specialty ◀を検索し、試験資料を無料でダウンロードしてくださいAWS-Certified-Machine-Learning-Specialty合格率書籍
- 更新する-最新のAWS-Certified-Machine-Learning-Specialty更新版試験-試験の準備方法AWS-Certified-Machine-Learning-Specialty認定資格 ✍ ウェブサイト☀ www.goshiken.com ️☀️を開き、▛ AWS-Certified-Machine-Learning-Specialty ▟を検索して無料でダウンロードしてくださいAWS-Certified-Machine-Learning-Specialty的中問題集
- 一番優秀なAWS-Certified-Machine-Learning-Specialty更新版 - 合格スムーズAWS-Certified-Machine-Learning-Specialty認定資格 | ユニークなAWS-Certified-Machine-Learning-Specialty受験対策 ↘ ➡ www.passtest.jp ️⬅️には無料の▷ AWS-Certified-Machine-Learning-Specialty ◁問題集がありますAWS-Certified-Machine-Learning-Specialty再テスト
- 更新する-最新のAWS-Certified-Machine-Learning-Specialty更新版試験-試験の準備方法AWS-Certified-Machine-Learning-Specialty認定資格 🎄 今すぐ✔ www.goshiken.com ️✔️で⏩ AWS-Certified-Machine-Learning-Specialty ⏪を検索して、無料でダウンロードしてくださいAWS-Certified-Machine-Learning-Specialty試験対策書
- AWS-Certified-Machine-Learning-Specialty復習対策書 🐎 AWS-Certified-Machine-Learning-Specialty再テスト 🥵 AWS-Certified-Machine-Learning-Specialty勉強方法 📸 Open Webサイト▛ www.pass4test.jp ▟検索➥ AWS-Certified-Machine-Learning-Specialty 🡄無料ダウンロードAWS-Certified-Machine-Learning-Specialty合格内容
- AWS-Certified-Machine-Learning-Specialty科目対策 🏓 AWS-Certified-Machine-Learning-Specialty関連復習問題集 📺 AWS-Certified-Machine-Learning-Specialty試験準備 🔝 ▷ www.goshiken.com ◁の無料ダウンロード⮆ AWS-Certified-Machine-Learning-Specialty ⮄ページが開きますAWS-Certified-Machine-Learning-Specialty科目対策
- AWS-Certified-Machine-Learning-Specialty一発合格 💑 AWS-Certified-Machine-Learning-Specialty学習教材 🦚 AWS-Certified-Machine-Learning-Specialty模擬資料 🦇 ➡ www.it-passports.com ️⬅️で⏩ AWS-Certified-Machine-Learning-Specialty ⏪を検索して、無料でダウンロードしてくださいAWS-Certified-Machine-Learning-Specialty専門知識訓練
- 認定する-更新するAWS-Certified-Machine-Learning-Specialty更新版試験-試験の準備方法AWS-Certified-Machine-Learning-Specialty認定資格 ⏬ ✔ www.goshiken.com ️✔️を入力して⏩ AWS-Certified-Machine-Learning-Specialty ⏪を検索し、無料でダウンロードしてくださいAWS-Certified-Machine-Learning-Specialty資格勉強
- 効果的なAWS-Certified-Machine-Learning-Specialty更新版 - 合格スムーズAWS-Certified-Machine-Learning-Specialty認定資格 | 素晴らしいAWS-Certified-Machine-Learning-Specialty受験対策 🎵 ➽ www.pass4test.jp 🢪の無料ダウンロード✔ AWS-Certified-Machine-Learning-Specialty ️✔️ページが開きますAWS-Certified-Machine-Learning-Specialty一発合格
- AWS-Certified-Machine-Learning-Specialty関連受験参考書 🧱 AWS-Certified-Machine-Learning-Specialty専門知識訓練 🍔 AWS-Certified-Machine-Learning-Specialty合格率書籍 ⏳ 検索するだけで☀ www.goshiken.com ️☀️から「 AWS-Certified-Machine-Learning-Specialty 」を無料でダウンロードAWS-Certified-Machine-Learning-Specialty日本語版受験参考書
- AWS-Certified-Machine-Learning-Specialty受験準備 🧾 AWS-Certified-Machine-Learning-Specialty再テスト 🕎 AWS-Certified-Machine-Learning-Specialty合格率書籍 😫 ウェブサイト▶ www.japancert.com ◀を開き、▶ AWS-Certified-Machine-Learning-Specialty ◀を検索して無料でダウンロードしてくださいAWS-Certified-Machine-Learning-Specialty専門知識訓練
- www.stes.tyc.edu.tw, academia.ragif.com.ar, www.the-marketingengine.com, www.stes.tyc.edu.tw, daotao.wisebusiness.edu.vn, yalamon.com, asargeo.com, study.stcs.edu.np, deafhealthke.com, www.stes.tyc.edu.tw, Disposable vapes
無料でクラウドストレージから最新のTopexam AWS-Certified-Machine-Learning-Specialty PDFダンプをダウンロードする:https://drive.google.com/open?id=1dmZZ5YNr0NOWnFyehW16iuwL0BGqzXiu
